What is The Best Tympanometric Protocols for Testing Newborns?

Navid Shahnaz, Ph.D. University of British Columbia, School of Audiology & Speech Sciences

Why Tympanograms are Different in Newborns

- The external ear and middle-ear in infants will undergo some structural changes that can affect the mechano-acoustical properties of conductive mechanism. (Keefe et al, 1993; Keefe and Levi, 1996).
 - The external auditory canal will increase in size and becomes less compliant (due the formation of the bone) post-natally until about one year of age (Anson & Donaldson (1981). This can potentially reduce the resonance gain and shift the resonant frequency of the canal to the higher value in younger infants;
 - growth of middle-ear cavity from the tympanic membrane to the stapes footplate in the first 6 months after birth Eby & Nadol (1986) and an increase in pneumatization of mastoid air cells which will contribute to the enlargement of volume in the middle-ear cavity. The volume of air is important in determining the tympanic membrane compliance and controlling the conduction of low frequencies;
 - a decrease in the overall mass of the middle-ear due to presence amniotic fluid and mesenchyme in the middle-ear cavity which may last for up to 5 months after birth Paparella et al. (1980); a decreases in the density of stapes due to internal bone erosion which could lead to a reduction in mass for this structure,
 - tightening of the osssicle joints and stapes footplate attachment to the oval window which may decrease the resistive component

What Would be the Effect of These Changes on the Tympanogram?

 The overall maturation of the external and middle-ear may result in an increase in mass at birth which will gradually decrease as infants become older. This prediction has been confirmed by multi-frequency tympanometry (Holte et al., 1993; Shahnaz, 2002)

Typical Tympanograms Seen in Normal Newborns

Adult

Newborn

226 Hz Tympanogram

Newborn

Shahnaz, 2002;

Typical Tympanogram Seen in an Abnormal Newborn

Margolis & Hunter, 1999

Results (Shahnaz, 2002)

- While eighteen ears had multiple peak or irregular patterns on Y tympanogram at standard low probe tone frequency (226 Hz), 22 ears had a single peak and essentially normal shape tympanogram on G component at 800 Hz and Y @ either 800 or 1000 Hz.
- One infant who failed Algo-II protocol in both ears at the time of birth and at 3-weeks of age, had an irregular Y tympanogram at 226 Hz and single peak G tympanogram at 800 Hz. This infant was later diagnosed to have a moderate to severe bilateral sensorineural

=/> 3 peaks/Flat

Results (Polka, Shahnaz, Zeitoni, 2002)

Figure 2: Proportion of single peak admittance (Y) tympanogram in newborn infants and young adults across four different probe tone frequency.

Results – Margolis et al, 2003

- Normative data presented for NICU graduates tested at a mean age of 3.7 weeks and full-term infants tested at 2-4 weeks who passed an otoacoustic emissions (OAE) screen
- The 5th percentile for static admittance for NICU and full-term babies was identical, allowing a single pass-fail criterion (Static Y)

NICU

Margolis et al., 2003

	TPP				Comp Y	Comp Y
	(daPa)	Y+200	Y-400	Y Peak	(+200)	(-400)
Mean	-10	1.4	0.8	2.7	1.3	1.9
S.D.	68	0.4	0.4	1.2	1.0	1.3
Max	200	2.3	1.7	7.0	5.0	6.0
Min	-200	0.7	0.0	0.8	0.0	0.1
5th %ile	-133	0.8	0.3	1.2	0.1	0.6
95th %ile	113	2.2	1.4	4.8	3.5	4.3
50th %ile	0	1.4	0.8	2.5	1.0	1.7

Normative tympanometric values from 1-kHz tympanograms from 46 ears of 30 full-term babies tested at 2-4 weeks chronological age.

Summary

- Recommend the use of 1000Hz probe tone tymapanometry to test babies under 6 months using Ytympanogram
- Adapt Margolis et al, 2003 norms until more data become available
- Tympanometry using 220 Hz should not be used.
- Equipment improvements are needed to meet audiologists' needs for simplicity and ease of use.
- More data are need on interpretation of traces and validation of results.

Thank You

